MathNet.Numerics 3.0.0-beta04

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net 4.0, .Net 3.5 and Mono on Windows, Linux and Mac; Silverlight 5, WindowsPhone/SL 8, WindowsPhone 8.1 and Windows 8 with PCL Portable Profiles 47 and 344; Android/iOS with Xamarin.

No packages depend on MathNet.Numerics.

Candidate for v3.0 Release Linear Algebra: FoldRows renamed to FoldByRow, now operates on and returns arrays; same for columns New FoldRows and ReduceRows that operate on row vectors; same for columns Split Map into Map and MapConvert (allows optimization in common in-place case) Row and columns sums and absolute-sums F# DiagonalMatrix module to create diagonal matrices without using the builder F# Matrix module extended with sumRows, sumAbsRows, normRows; same for columns Build: extend build and release automation, automatic releases also for data extensions and native providers

This package has no dependencies.

Version Downloads Last updated
6.0.0-beta1 21 01/28/2024
5.0.0 3,047 06/16/2022
5.0.0-beta02 19 12/17/2023
5.0.0-beta01 17 06/13/2023
5.0.0-alpha16 18 12/10/2023
5.0.0-alpha15 15 07/10/2023
5.0.0-alpha14 16 12/21/2023
5.0.0-alpha13 16 06/24/2023
5.0.0-alpha12 18 12/10/2023
5.0.0-alpha11 17 09/18/2023
5.0.0-alpha10 21 08/20/2023
5.0.0-alpha09 24 12/11/2023
5.0.0-alpha08 18 07/28/2023
5.0.0-alpha07 21 07/10/2023
5.0.0-alpha06 10 01/19/2024
5.0.0-alpha05 19 09/18/2023
5.0.0-alpha04 19 12/03/2023
5.0.0-alpha03 19 09/17/2023
5.0.0-alpha02 13 06/24/2023
5.0.0-alpha01 17 06/13/2023
4.15.0 2,142 11/12/2021
4.14.0 19 10/22/2023
4.13.0 21 06/12/2023
4.12.0 749 12/16/2020
4.11.0 21 06/23/2023
4.10.0 17 08/20/2023
4.9.1 14 10/14/2023
4.9.0 19 06/11/2023
4.8.1 15 10/14/2023
4.8.0 20 06/23/2023
4.8.0-beta02 19 12/25/2023
4.8.0-beta01 21 06/12/2023
4.7.0 18 10/14/2023
4.6.0 16 10/14/2023
4.5.1 18 10/14/2023
4.5.0 17 10/14/2023
4.4.1 20 07/26/2023
4.4.0 17 10/05/2023
4.3.0 21 07/09/2023
4.2.0 22 07/27/2023
4.1.0 19 10/14/2023
4.0.0 18 07/09/2023
4.0.0-beta07 21 11/24/2023
4.0.0-beta06 14 01/12/2024
4.0.0-beta05 18 06/24/2023
4.0.0-beta04 18 12/13/2023
4.0.0-beta03 18 08/19/2023
4.0.0-beta02 16 06/25/2023
4.0.0-beta01 16 06/24/2023
4.0.0-alpha04 20 12/28/2023
4.0.0-alpha03 21 06/12/2023
4.0.0-alpha02 14 12/16/2023
4.0.0-alpha01 18 12/12/2023
3.20.2 14 10/23/2023
3.20.1 20 10/23/2023
3.20.0 18 10/23/2023
3.20.0-beta01 16 12/15/2023
3.19.0 14 10/23/2023
3.18.0 22 10/22/2023
3.17.0 20 10/23/2023
3.16.0 20 10/22/2023
3.15.0 18 10/22/2023
3.14.0-beta03 12 12/21/2023
3.14.0-beta02 20 12/21/2023
3.14.0-beta01 12 01/11/2024
3.13.1 17 10/10/2023
3.13.0 16 10/22/2023
3.12.0 16 10/23/2023
3.11.1 21 10/11/2023
3.11.0 19 10/23/2023
3.10.0 18 10/23/2023
3.9.0 17 10/14/2023
3.8.0 20 10/14/2023
3.7.1 17 10/14/2023
3.7.0 15 10/14/2023
3.6.0 21 10/14/2023
3.5.0 14 10/13/2023
3.4.0 17 10/14/2023
3.3.0 23 10/14/2023
3.3.0-beta2 15 12/21/2023
3.3.0-beta1 16 12/13/2023
3.2.3 14 10/14/2023
3.2.2 14 10/14/2023
3.2.1 18 10/13/2023
3.2.0 12 10/14/2023
3.1.0 16 10/14/2023
3.0.2 16 10/14/2023
3.0.1 16 10/13/2023
3.0.0 20 10/14/2023
3.0.0-beta05 20 11/29/2023
3.0.0-beta04 16 12/21/2023
3.0.0-beta03 16 12/09/2023
3.0.0-beta02 14 12/19/2023
3.0.0-beta01 14 01/12/2024
3.0.0-alpha9 16 12/21/2023
3.0.0-alpha8 19 12/17/2023
3.0.0-alpha7 21 12/20/2023
3.0.0-alpha6 16 12/02/2023
3.0.0-alpha5 17 12/21/2023
3.0.0-alpha4 16 12/21/2023
3.0.0-alpha1 21 10/16/2023
2.6.2 14 10/14/2023
2.6.1 16 10/14/2023
2.6.0 15 10/14/2023
2.5.0 17 10/14/2023
2.4.0 20 10/14/2023
2.3.0 18 10/14/2023
2.2.1 13 10/14/2023
2.2.0 14 10/14/2023
2.1.2 36 10/14/2023
2.1.1 19 10/14/2023