MathNet.Numerics 3.14.0-beta01

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net 4.0, .Net 3.5 and Mono on Windows, Linux and Mac; Silverlight 5, WindowsPhone/SL 8, WindowsPhone 8.1 and Windows 8 with PCL portable profiles 7, 47, 78, 259 and 328; Android/iOS with Xamarin.

No packages depend on MathNet.Numerics.

FFT: MKL native provider backend. FFT: 2D and multi-dimensional FFT (only supported by MKL provider, managed provider pending). FFT: real conjugate-even FFT (only leveraging symmetry in MKL provider). FFT: managed provider significantly faster on x64. Provider Control: separate Control classes for LA and FFT Providers. Provider Control: avoid internal exceptions on provider discovery. Linear Algebra: dot-power on vectors and matrices, supporting native providers. Linear Algebra: matrix Moore-Penrose pseudo-inverse (SVD backed). Root Finding: extend zero-crossing bracketing in derivative-free algorithms. Window: periodic versions of Hamming, Hann, Cosine and Lanczos windows. Special Functions: more robust GammaLowerRegularizedInv (and Gamma.InvCDF). BUG: ODE Solver: fix bug in Runge-Kutta second order routine ~Ksero

.NET Framework 3.5

.NET Framework 4.0

  • No dependencies.

Version Downloads Last updated
6.0.0-beta1 21 01/28/2024
5.0.0 3,047 06/16/2022
5.0.0-beta02 19 12/17/2023
5.0.0-beta01 17 06/13/2023
5.0.0-alpha16 18 12/10/2023
5.0.0-alpha15 15 07/10/2023
5.0.0-alpha14 16 12/21/2023
5.0.0-alpha13 16 06/24/2023
5.0.0-alpha12 18 12/10/2023
5.0.0-alpha11 17 09/18/2023
5.0.0-alpha10 21 08/20/2023
5.0.0-alpha09 24 12/11/2023
5.0.0-alpha08 18 07/28/2023
5.0.0-alpha07 21 07/10/2023
5.0.0-alpha06 10 01/19/2024
5.0.0-alpha05 19 09/18/2023
5.0.0-alpha04 19 12/03/2023
5.0.0-alpha03 19 09/17/2023
5.0.0-alpha02 13 06/24/2023
5.0.0-alpha01 17 06/13/2023
4.15.0 2,142 11/12/2021
4.14.0 19 10/22/2023
4.13.0 21 06/12/2023
4.12.0 749 12/16/2020
4.11.0 21 06/23/2023
4.10.0 17 08/20/2023
4.9.1 14 10/14/2023
4.9.0 19 06/11/2023
4.8.1 15 10/14/2023
4.8.0 20 06/23/2023
4.8.0-beta02 19 12/25/2023
4.8.0-beta01 21 06/12/2023
4.7.0 18 10/14/2023
4.6.0 16 10/14/2023
4.5.1 18 10/14/2023
4.5.0 17 10/14/2023
4.4.1 20 07/26/2023
4.4.0 17 10/05/2023
4.3.0 21 07/09/2023
4.2.0 22 07/27/2023
4.1.0 19 10/14/2023
4.0.0 18 07/09/2023
4.0.0-beta07 21 11/24/2023
4.0.0-beta06 14 01/12/2024
4.0.0-beta05 18 06/24/2023
4.0.0-beta04 18 12/13/2023
4.0.0-beta03 18 08/19/2023
4.0.0-beta02 16 06/25/2023
4.0.0-beta01 16 06/24/2023
4.0.0-alpha04 20 12/28/2023
4.0.0-alpha03 21 06/12/2023
4.0.0-alpha02 14 12/16/2023
4.0.0-alpha01 18 12/12/2023
3.20.2 14 10/23/2023
3.20.1 20 10/23/2023
3.20.0 18 10/23/2023
3.20.0-beta01 16 12/15/2023
3.19.0 14 10/23/2023
3.18.0 22 10/22/2023
3.17.0 20 10/23/2023
3.16.0 20 10/22/2023
3.15.0 18 10/22/2023
3.14.0-beta03 12 12/21/2023
3.14.0-beta02 20 12/21/2023
3.14.0-beta01 12 01/11/2024
3.13.1 17 10/10/2023
3.13.0 16 10/22/2023
3.12.0 16 10/23/2023
3.11.1 21 10/11/2023
3.11.0 19 10/23/2023
3.10.0 18 10/23/2023
3.9.0 17 10/14/2023
3.8.0 20 10/14/2023
3.7.1 17 10/14/2023
3.7.0 15 10/14/2023
3.6.0 21 10/14/2023
3.5.0 14 10/13/2023
3.4.0 17 10/14/2023
3.3.0 23 10/14/2023
3.3.0-beta2 15 12/21/2023
3.3.0-beta1 16 12/13/2023
3.2.3 14 10/14/2023
3.2.2 14 10/14/2023
3.2.1 18 10/13/2023
3.2.0 12 10/14/2023
3.1.0 16 10/14/2023
3.0.2 16 10/14/2023
3.0.1 16 10/13/2023
3.0.0 20 10/14/2023
3.0.0-beta05 20 11/29/2023
3.0.0-beta04 16 12/21/2023
3.0.0-beta03 16 12/09/2023
3.0.0-beta02 14 12/19/2023
3.0.0-beta01 14 01/12/2024
3.0.0-alpha9 16 12/21/2023
3.0.0-alpha8 19 12/17/2023
3.0.0-alpha7 21 12/20/2023
3.0.0-alpha6 16 12/02/2023
3.0.0-alpha5 17 12/21/2023
3.0.0-alpha4 16 12/21/2023
3.0.0-alpha1 21 10/16/2023
2.6.2 14 10/14/2023
2.6.1 16 10/14/2023
2.6.0 15 10/14/2023
2.5.0 17 10/14/2023
2.4.0 20 10/14/2023
2.3.0 18 10/14/2023
2.2.1 13 10/14/2023
2.2.0 14 10/14/2023
2.1.2 36 10/14/2023
2.1.1 19 10/14/2023